Skip links

Our Blog

Latest Updates

machinelearning-seo-gen-01

Diferencias entre un Agente IA y un ChatBot

En plena revolución de importantes avances de los modelos de Inteligencia Artificial, es clave establecer diferencias entre un Agente IA y un ChatBot para saber cómo acoplar la tecnología más adecuada a las estrategias de comunicación, marketing, ventas y posicionamiento

Read More

B2B Machine Learning SEO for Agencies

MLSEO is committed to deploying machine learning (ML) and data science to deliver cutting-edge SEO solutions. By harnessing the potential of these technologies, we aim to optimize our services, improve efficiency, and provide unparalleled results for our clients.    

Read More

Trusted outsourced Machine Learning SEO provider

We are developing machine learning products to boost the SEO profit of B2B Digital marketing agencies in the US, EU, and Latam.

Cost Effective

High-Quality Standards

Data and AI Governance compliance

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix

# Sample data creation
data = {
    'positive_comments': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
    'client_likes_service': [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]  # 0 = No, 1 = Yes
}
df = pd.DataFrame(data)

# Data preprocessing
X = df[['positive_comments']]
y = df['client_likes_service']

# Splitting the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Model training
model = LogisticRegression()
model.fit(X_train, y_train)

# Model evaluation
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

# Visualization
plt.scatter(df['positive_comments'], df['client_likes_service'], color='blue')
plt.title('Positive Comments vs Client Satisfaction')
plt.xlabel('Number of Positive Comments')
plt.ylabel('Client Likes Service (0 = No, 1 = Yes)')
plt.axhline(0.5, color='red', linestyle='--')  # Threshold line
plt.show()
This website uses cookies to improve your web experience.